当前位置: 模型材料 >> 模型材料资源 >> 盘点气体传感器在智能家电中应用进展,未来
气体传感器及其阵列概述
气体传感器按照工作原理、气敏材料类别、制作工艺等不同,可以分为多种类型。按工作原理不同通常分为半导体型、电化学型、催化燃烧型、红外气体传感器和光离子(PID)气体传感器等。虽然单一气体传感器对不同气体响应的敏感度不同,但由于气体传感器存在广谱响应,导致其有专一性差、在多种气体同时存在时易受干扰等问题,因此,单一的传感器很难实现识别气体种类组成的功能。采用多个气体传感器构成阵列则可以有效解决传感器广谱响应的问题。通过传感器的阵列化,增加了检测气体的维度,获取更多的信号有助于评估更多参数并提高判断识别能力。由于实际场景下气体类型多样,为了增强传感器对特定气体的识别能力,通常需要尽可能使用数量多、差异化大的传感器构成阵列。然而,随着气体传感器阵列中使用传感器个数的增多,后续的数据处理就越复杂,系统的成本也越高。因此,使传感器数量、种类和识别能力达到平衡的传感器阵列优化显得格外必要。传感器阵列优化可以减小阵列中所使用的气体传感器个数,以免后续数据处理产生的复杂度较高的问题,进而降低传感器阵列使用成本。在传感器阵列优化中比较常用的方法有基于相关系数、聚类分析等方法。
气体识别算法
气体传感器阵列识别算法的理论基础是模式识别。所谓模式识别就是基于一定已知的数据,根据样本的特征,用计算的方法将其对应到某种特定的模式类别中的技术。模式识别通常由4个部分组成,分别为信息获取、预处理、特征提取和选择及分类模型选择。数据预处理包括信号去噪、基线校正、均值中心化、归一化等操作。特征选择和提取是从提取到的特征中寻找最优特征子集的过程,可以剔除冗余特征,减少不相关特征个数、简化学习的复杂性、加速模型训练和增强泛化能力。特征选择主要通过单特征排序方法、多特征排序方法、特征递减消除方法等进行筛选。气体传感器阵列用到的分类模型主要有:主成分分析法(PCA)、线性判别分析法(LDA)、逻辑回归(LR)、决策树(DT)、随机森林(RF)和人工神经网络(ANN)等。其中,PCA和ANN应用最为广泛。
通过结合人工智能算法,气体传感器及其阵列在家电领域保鲜、烹饪、健康监测等智能场景中展现出诸多潜在应用。
(1)气体传感器在保鲜上的应用
食材在保鲜过程中,因其自身的呼吸作用以及酶促反应,或者外部微生物的作用,食材中的大分子物质被逐渐降解,并释放出令人难以接受的异味。因此,使用气体传感器监测食物储藏的新鲜程度越来越受到冰箱厂商的
转载请注明:http://www.aideyishus.com/lkzp/5951.html